The Student Scholar Award

Nomination Deadline 

April 5, 2021

Description

  • The award recognizes an outstanding student scholar with a $1,000 scholarship.
  • Given annually since 2006.
  • Awarded to an undergraduate, graduate, or post-graduate student performing research to advance the science and practice of fire protection engineering.
  • The goal of this award is to recognize outstanding student scholars around the world in support of the science and practice of fire protection engineering.
  • This award is separate and distinct from the Foundation's Student Research Grants.

Eligibility

  • Nominations are accepted from undergraduate, graduate, and post-graduate students who are performing research to advance the science and practice of fire protection engineering.

Nominate Someone for this Award

To submit a nomination, you must be logged into your SFPE member profile. Click here to log in > Profile > Account Information> Forms > Submit an Awards Nomination and select the Student Scholar Award. 

Please be sure to include the following information in an uploaded document along with the nomination form.

  1. Full name of the applicant.
  2. Applicant mailing and email addresses.
  3. A description of the research (max 1000 words) which illustrates how the research relates to fire or emergencies. Preference will be given to projects which recognize and are consistent with the SFPE Research Roadmap. The project will be evaluated based on its technical quality, a clear methodology and expected outcomes.
  4. A letter of support from the faculty member who will be supervising the research.
  5. Evidence of the applicant’s university academic achievement in the form of transcripts or similar official documentation as well as publication record, especially for doctoral students.
  6. Evidence of the applicant’s involvement in professional or non-professional organizations, and any involvement with the profession or the community at large, illustrating leadership and volunteerism (max 250 words).
  7. Name and brief biography of the student as the nominated scholarship recipient (max 250 words).

 If you have any questions please email foundation@sfpe.org.

History

The Student Scholar Award was established in 2006 by the Board of Governors of the SFPE Foundation to recognize students who are performing research to advance the science and practice of fire protection engineering.

The Foundation's Board of Governors makes the selection annually. Nominations are accepted from undergraduate, graduate, and post-graduate students and are judged on the scientific quality and relevance of their research to the fire protection engineering profession.

The recipient of this award receives a $1,000 honorarium from the SFPE Foundation.

2020 Recipient

Matthew Bonner
Imperial College London

Past Recipients


Combustion, Fire & Fire Safety Research Group Department of Structural Engineering, Ghent University

Study of the Importance of Non-Uniform Mass Density in Numerical Simulations of Fire Spread over MDF Panels in a Corner Configuration

Abstract

The distribution of mass density through the thickness of Medium Density Fiberboard (MDF) panels is known to be non-uniform. A few studies have previously investigated the influence of this non-uniform through-thickness density distribution on the thermal behavior of MDF panels in small-scale tests. This study assesses the significance of this material property on flame spread simulations in a medium-scale set-up, namely that of Single Burning Item (SBI) corner fire tests. Simulations are performed using FireFOAM 2.2.x, considering both uniform and non-uniform MDF material density profiles, using model-effective material properties determined from bench-scale pyrolysis tests conducted in a Fire Propagation Apparatus (FPA). The heat transfer from the gas phase is modeled by means of empirical expressions with adjusted parameters. The simulations are assessed against the results of several SBI experiments with MDF panels and a test with Calcium Silicate (CS) panels. When the non-uniform nature of the through-thickness density is taken into account, the fire growth prediction in terms of the total Heat Release Rate (HRR) is considerably different (20% higher peak HRR), mainly due to the characteristic high peak mass loss rate at the initiation of pyrolysis of MDF material, resulting from the higher mass density near the surface of the panels. Furthermore, total heat fluxes on the panels, lateral flame spread, surface pyrolysis and through-thickness char formation visibly depend on the non-uniform distribution of mass density, particularly in regions further away from the corner where the influence of thermal attack from the burner is less dominant. A new diagnostic is proposed for determining the pyrolysis front location and spread on the surface of the charring panels.

D. Zeinali, A. Gupta, G. Maragkos, G. Agarwal, T. Beji, J. Degroote, and B. Merci, "Study of the Importance of Non-Uniform Mass Density in Numerical Simulations of Fire Spread over MDF Panels in a Corner Configuration," Combustion and Flame 200 (2019), Pages 303–315, DOI: 10.1016/j.combustflame.2018.11.020.


2018 Selena K. Chin, University of Maryland


2017 Nicholas A. Traina, Ph.D., University of Illinois at Urbana-Champaign


2016 Aoife Hunt, Ph.D., University of Greenwich for research on Simulating Hospital Evacuation


2015 Karl Fridolf, Ph.D., Lund University for research on Rail Tunnel Evacuation


2014 Alistair Bartlett, University of Edinburgh for research on Charring Rates for Cross Laminated Timber Under Standard and Non-Standard Heating Scenarios


2013 Isaac Leventon, University of Maryland


2012 Axel Jonsson, Lund University


2011 Kurt J. Schebel, Worcester Polytechnic Institute


2010 James O'Neill, University of Canterbury


2008 Rani A. Kady, Old Dominion University


2007 Kevin LaMalva, Worcester Polytechnic Institute



2006 Allan Jowsey, University of Edinburgh